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This paper examines local anharmonic vibrations in molecules using an analysis that starts with an ab initio
potential energy surface, fits a model potential constructed of Gaussian basis functions, and proceeds to a
quantum mechanical analysis of the anharmonic modes using Cartesian harmonic oscillator basis functions
in a variational calculation. The objective of this work is to suggest methods, with origins in nuclear and
molecular (electronic) quantum mechanics, that should be useful for the accurate analysis of the local
anharmonic motions of hydrogen, and perhaps other atoms or small molecular fragments, residing in molecularly
complicated but otherwise harmonic environments.

1. Introduction

This paper presents an analysis oflocal anharmonic motion
of atoms in molecules that is constructed largely in the spirit of
nuclear (viz., shell model1), molecular,2 and solid state3 quantum
mechanical calculations. The analysis is local, much as the
LCAO and related approximations are local in nuclear, molec-
ular, and solid-state electronic calculations.2

To begin, with HCN as the example to illustrate the approach,
it is possible to determine accurate local hydrogen bond energies
with reference to the harmonically semirigid framework of the
remainder of the molecule (i.e., CN) using any of the variety
of available ab initio quantum chemistry computational pack-
ages. It is possible next to fit the energies to a model potential
function, which here is a series in the Gaussian basis functions.
For HCN in particular, withr1 ) rCH, r2 ) rNH, andr3 ) rCN,
the Gaussian potential has the form29

In eq 1.1,N is the collective upper limit of the exponent, or
sum of exponents, of any individual term in the potential; in
the calculations reported later in the paper, the maximum
polynomial order is generally taken to beN ) 10.

Although the model potential energy function for the hydro-
genic degrees of freedom, in the example HCN, is a linear
combination of Gaussian basis functions raised to simple powers,
alternate forms of model potential employ angle-arguments,
either directly or as further arguments of transcendental func-
tions, in addition to distance variables.4 The use here of three
bond vectors for HCN, one of which is linearly dependent,
implies the law of sines. As a consequence, there are enough
distance variables included in the model potential to account
for angle-bend degrees of freedom.

This model potential treats each bond, including the (assumed)
classical bond, CN, in the same way; there is no particular

advantage in using the harmonic model,1/2k(r - r0)2 with k the
usual force constant, in place of a Gaussian basis function in
the complete model potential. In fact, generally better model
potential energy fits to the original surface result if one uses
the same basis functions for each bond. If, however, one plans
not to includerCN in the quantal, anharmonic analysis, it is
computationally more efficient in the subsequent treatment to
rearrange the potential into two effective bond terms the
coefficients of which arerCN-dependent. Thus, one has

with

and

The matrix elements in the quantum mechanical analysis of
anharmonicity therefore make use of eq 1.2.

Finally, in any quantum mechanical analysis of the motions
of hydrogen in a molecule, there is the question of the choice
of expansion/reference points. A natural point of reference is
the point of (mechanical) equilibrium with respect to the heavier
atom to which hydrogen is attached. Working with such a
reference, one naturally adopts a sequence of bond and angle
coordinates suitable to the molecule involved. There has been
much work using this approach.4 On the other hand, for the
analyses of systems in which hydrogen, in particular, may
migrate via a series of local minima in a large and extended
molecule there is no reason not to consider these minima in
terms of Cartesian and difference coordinates that refer implicitly
to or are compatible with the overall collection of atoms.5-7† Part of the special issue “Jack Simons Festschrift”.
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This approach specifically considers the displacement of the
hydrogen atom with reference to an equilibrium point of
reference in the molecule. Indeed, this general approach allows
one to choose a point of reference to be a variational parameter,
should one wish.

The matrix elements of the kinetic and potential energy
operators for anharmonic hydrogen are evaluated in terms of
basis functions, each function of which is a product of three
one-dimensional Cartesian harmonic oscillator basis functions.
The coordinate origin of the wave function is also the point of
(mechanical) equilibrium. Thus, the wave function depends on
the displacement vectorr ) rH - rA where rA is the vector
location of the point of equilibrium,rH

0 , or arbitrary point
expansion.7

A particular matrix element of the potential operator, eq 1.2,
is

Because of the contraction properties of Gaussian basis func-
tions, the second bond-bond interaction term can be expressed
as an effective one-bond term. This property affords considerable
simplification.

It is clear from the expression for the matrix elements, eq
1.6, that one can extract the value of the harmonic force constant
for the CN bond by direct differentiation with respect torCN.
Both the coefficients in the potential, eq 1.2, and the matrix
elements of the Gaussian terms depend on this variable. As a
consequence, the harmonic vibrations of CN will be influenced
by the quantum mechanical character of the anharmonic H-C
and H-N bonds.

The next section presents the one-dimensional variant of the
Brody-Jacob-Moshinsky8 (BJM) coefficients for the Cartesian
harmonic oscillator basis functions. These coefficients find use
in the evaluation of matrix elements of operators such as eq
1.2. The evaluation of the Talmi integrals9 that naturally arise
from the BJM analysis is presented next. A closed form for the
Talmi integral follows easily from common Gaussian integral
forms, but it is demonstrated that a much more efficient
evaluation of a set of integrals follows with the use of recursion
relations. Finally, the results of a calculation of the HC-HN
stretch modes and the H-CN angle bend are presented. The
results point the way to more complex analyses of the behavior
of hydrogen in more complicated molecular settings.

2. Evaluation of Matrix Elements

2.1. Brody)Jacob)Moshinsky Coefficients and Talmi
Integrals for 1D Oscillator Functions. The strength of the
original BJM analysis8 of matrix elements (which applies to
the spherical oscillator basis functions) lies with the observation
that one of the two summations involving the Laguerre
polynomials in a matrix element can be carried out once, for
all time, to define new coefficients. These new coefficients then
can be used repeatedly for the evaluation of the remaining
summation for any legitimate operator. This situation also
applies to the 1D oscillator whose matrix elements depend on
the Hermite polynomials. As noted, for local vibrational and
related problems in molecular systems, the one-dimensional
BJM coefficients should useful.30

The normalized one-dimensional Cartesian wave functions
that satisfy the Schro¨dinger equation for the harmonic oscillator
model potential are

The Hermite polynomials are

where as usual, [m/2] implies the integer nearest tom/2. The
normalized eigenfunctions may be written as

with the coefficientsAm,s defined by

Given an operatorF(x), a general matrix element in terms of
this representation of the wave functions is

In the sense suggested by Moshinsky et al.,8 let

The maximum value ofp is

and

The indext can be replaced byt ) 1/2(m + n) - p - s. Thus,31

subject to

If F(x) is even, thenm + n ) even andp is an integer. On the
other hand, ifF(x) is odd, thenm + n ) odd, andp is 1/2-
integer, as is also the case with the spherical oscillator functions.

With the definition of the one-dimensional Talmi integral9,14,15

the matrix element of the operatorF(x) is
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The use of theΓ function in eq 2.11 follows Moshinsky’s8,16

practice for the three-dimensional case and normalizes the
integral for the case of the unit operatorF(x) ) 1.

It is not necessary to list these coefficients as they are easily
coded and compute quickly to high order.

2.2. 1D Talmi Integrals for the Operator e-bx2. If x in the
operatorF(x) ) e-bx2 is the same as the argument of the wave
function, the 1D Talmi integral is trivial:Tp ) (a/(a +
b))p+(1/2).14

When the coordinate argument of the operator differs from
that of the wave function, the following analysis applies. For
example, letxH - XA be the displacement of hydrogen (or an
appropriate atom) from a position of reference or equilibrium
XA. The argumentxB of the operator e-bxB

2 now is the
instantaneous distance between the hydrogen and an external
source, such as the carbon or nitrogen atom,xH - XB [with, for
example, Bf C or N].32 The Talmi integral is now slightly
more involved.

The matrix element of the operator e-bxB
2 is

Noting thatxA ) x - XA andxB ) x - XB, the Talmi integral33

is

andXBA ) XB - XA.

2.3. Recurrence Relations for the Talmi Integral for the
Operator e-bxB

2. While the results of the last section are correct
and work, the summation overj in eq 2.14 is not particularly
efficient. This is especially true when compared to the use of
the direct evaluation of the matrix elements following the lines
of earlier work.7

The general one-dimensional Talmi integral is defined by eq
2.11. The particular Talmi integral, for which the recurrence
relation will be developed, is defined in the first line of eq 2.14.
Integrating by parts yields

The first term vanishes with the limits. Expansion of the
remaining integral develops into definitions of the Talmi integral
for the indicesp + 1 andp + 1/2. Thus,

which is trivially rearranged to

One needs onlyT0 andT1/2 to start the recurrence relation. The
expression forT0 is

and

Note that ifT-|p| ) 0 for all p, then onlyT0 is required to start
the recursion asT1/2 and all higher half-integerT-quantities are
automatically defined; the recursion begins withp ) - 1/2 and
the explicit expression forT0, eq 2.18.

2.4. Matrix Elements for Bond)Bond Terms in the
Potential. Matrix elements of the 2-bond many-body terms in
the potential are particularly simple to evaluate in the case that
the potential is represented as a series in Gaussian basis
functions. The Gaussian function contracts to

with

Thus, for thex-component of the appropriate Talmi integral one
finds
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integral, eq 2.11. It is worth noting that the manipulations
indicated are general and are not restricted to the example of
HCN. If one makes use of multiple points of reference for the
wave function basis set, it is still possible to reduce reasonably
complicated individual matrix elements to simpler forms. Thus,
a relatively small collection of integral subroutines suffices for
the entire analysis.

3. Example: HCN

HCN is both a good example and a difficult one to use to
test any scheme of analysis that attempts to handle vibrational
anharmonic character. The following paragraphs deal, first, with
the fitting of the Gaussian model potential, eq 1.1, to an ab
initio-generated potential energy surface. Next, a straightforward
quantum mechanical analysis of the motion of the hydrogen
atom in the field of the fixed atoms C and N is given. Finally,
the Discussion suggests some reasonable directions for further
work. In particular, drawing a parallel to the molecular electronic
problem2 and the development of modern techniques to handle
such systems, a similar approach should, in time, yield practical
analyses of the dynamics of hydrogen in a number of settings.
To be useful, however, it is necessary that some generally
applicable entities be developed: i.e., basis sets for light atoms
and small molecular fragments in various environments with
stable, optimized sets of orbital exponents much as is the case
with Slater functions17 and the large collection of Gaussian basis
functions that are available for modern electronic state calcula-
tions.18,19

The fitting of HCN to a Gaussian model potential was also
considered in a previous paper.7 There the potential was
essentially the same as eq 1.1, but the manipulation was slightly
different. Moreover, the potential of ref 7 was fit to data derived
from the Murrell et al.20 potential for HCN.

The potential energy surface for HCN was generated with
the Gaussian 03 suite of quantum chemical programs18 at the
MP2 level of approximation using the 6-31G basis set. For the
whole molecule, including hydrogen isocyanide, HCNh CNH,
3456 points were generated in thexy-plane to sample the
positions of equilibrium as well as the transition state. The
subsequent fitting of this surface to the model potential function
yielded a less-than-impressive minimum root mean square error
of 150 cm-1, a result that probably reflects more a limited
sample point density than the intrinsic accuracy of the fitting
function. On the other hand, fitting the model potential only to
the species HCN with 1728 points yielded an ultimate root mean
square error of 7.3 cm-1. The subsequent analysis of local
anharmonicity was carried out using a Gaussian potential fit to
this smaller, local set of points. As will be seen, the anharmonic
analysis is faithful to the model potential that, in turn, is faithful
to the potential energy surface generated from the ab initio
quantum chemical routine.

Harmonic-limit frequencies at single optimum equilibrium
configurations were also found at the MP2, MP4, and CCSD
levels of approximation. In all cases, agreement with experi-
mental frequencies21 was not as good as one would like, but
this difference belongs to the quantum chemical program, not
the Gaussian model potential, eq 1.1. Nevertheless, for the
purpose of illustration, the subsequent analysis makes use of
the potential surface obtained. The results of the ab initio
calculations using Gaussian 03 are presented in Table 1.

The fitting of the model potential to the ab initio H-potential
energy surface data employed both the Levenberg-Marquardt
nonlinear least squares routine and a straight linear least-squares
analysis.22 The Levenberg-Marquardt routine, available in the

Numerical Recipespackage,22 was modified by replacing the
Gaussian elimination routine by a singular value decomposition.
The use of large basis sets of simple Gaussian functions seems
to lead to instability about pivot points that cause the Gaussian
elimination routine to crash due to accidental degeneracies.
Although the Levenberg-Marquardt routine can, in principle,
also handle linear least squares components in a model potential,
it was found that the use of a separate singular value decom-
position-least-squares fit, after the initial application of the
Levenberg-Marquardt method, yielded much better results.
Several separate runs of the least-squares routine eventually
resulted in a stable minimum root mean square error with no
appreciable further improvement or change in the set of
coefficients. In general, modeling potential energy functions with
Gaussian basis functions seems to be slightly more tempera-
mental than with other kinds of functions, e.g., basis sets of
Morse functions of the kindy(r) ) 1 - exp[- a(r - r0)].34

Quantum mechanical calculations were carried out using a
basis set constructed as a product of three one-dimensional
Cartesian basis functions referred to the point of equilibrium
for H as the coordinate origin. Thus, the argument of the wave
function was xH - xH

0 with similar terms for the other
Cartesian coordinates. The axis of the molecule was chosen to
be collinear with thex-Cartesian axis. The motion of hydrogen
predominately along thex-axis therefore corresponded to the
H-CN linear stretch. Motions of H in thexy,xz-planes cor-
responded to the H-CN angle bend modes. The state function
was

wheren ) (nx, ny, nz) and

The maximum quantum numberN used for an individual
component of the wave function was 9. For the state function,
no product of basis functions,Φn, exceeded the conditionnx +
ny + nz e N ) 9. Lower values ofN were tried, but the
frequency associated primarily with the H-CN stretch seemed
reasonably to stabilize withN ) 9 as the maximum order.

In terms of the component basis functions, each transition
from the ground state,n ) 0, looked like a mixture of individual
basis-transitions along the three Cartesian coordinates. That is,
a stretch showed elements of bend, and the converse. This
situation, of course, is consistent with the normal mode for an
angular bend at (nearly) constantR. The generation of matrix
elements and the subsequent variational calculation to determine

TABLE 1: Summary of Gaussian 0317 Calculations

Optimization (Bond Distances)
RHC [Å] RCN [Å]

MP2 1.0706 1.1985
MP4 1.0749 1.1941
CCSD 1.0736 1.1817

Harmonic Frequencies (cm-1)
MP2 681.7× 2 1907.6 3475.8
MP4 660.2× 2 1932.3 3426.7
CCSD 689.2× 2 2075.3 3441.6
expt20 727.0× 2 2129.1 3442.3

Energy Scan (1,728 points) in the Half-Space
RHC 1.0 Å f 1.364 Å
RCN 0.8 Å f 1.296 Å
ΘHCN 180° f 125°

Ψ(r ) ) ∑
n

CnΦn(r) (3.1)

Φn(r ) ) ∏
q)x,y,z

φnq
(q) (3.2)
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optimum values of the elements of the vectorC in eq 3.1 was
straightforward to carry out. In addition, two separate orbital
exponential quantitiesa, cf. eq 2.1 were tried, one for the
x-coordinateax and the other for they, z-coordinatesay ) az.
In the end, one value of the wave function exponent was used
for all the Cartesian bases cf. Table 2 and Figures 1 and 2).
Variation of the energy with respect to these quantities yielded
a number of local (and sometimes an apparent) global minima.
For small values of the orbital exponent,a, the energy minima,
however, proved to be unphysical in terms of the frequencies
associated with the transitions. The behavior of the HCN system
with the variation of the orbital exponents is illustrated in Figures
1 and 2. In the neighborhood of a value ofax ) 95 Å-2, the
stretch frequency was found to be virtually constant (varying
by a few tens of wavenumber) for a much wider range of values
for ay ) az. It was ultimately found that a single value of the
orbital exponenta gave reasonable results. Indeed, it was found,
as shown in Figure 2, that the system was variationally
optimized with respect to the linear stretch frequency.

The analysis of the character of a particular transition was
carried out by evaluating two quantities. The first was the
effective transition dipole (it needed to be nonzero for a defined
difference in energy levels to correspond to a transition), and
the second was a transition character analysis that was carried
out using the excited-state eigenvector together with the effective
quantum number labels taken from the basis functions associated
with the eigenvector components. Thus, the effectivex-character
of a transition is35

where I is the Ith eigenstate andN is the maximum value of
the wave function. Note, the upper value ofnx is limited by the
condition nx + ny + nz e N and is not necessarilyN in a
particular sum. There are similar quantities〈ny〉I and〈nz〉I. The
triplet of numbers (〈nx〉I, 〈ny〉I, 〈nz〉I) together with the Cartesian
components of the transition dipole gives a reasonable indication
of the character of the transition.

Table 2 presents a summary of the transitions found fora )
97.5 Å-2 associated with the minimum value of the frequency
of the linear stretch. Apart from the easily identified lowest
angle-bend transition and the linear stretch, there are other
transitions essentially involving angular deformations. The
doubly degenerate transition at 2841 cm-1 appears to have a
very small transition probability. From the character of the
transition, it involves both they and z Cartesian components
and may be a consequence of the analysis rather than a reflection
of reality. The next higher degenerate transition shows a purer
character ofy or z.

Although the linear stretch frequency is greater (by about
400 cm-1) than the observed value, there may be a number of
explanations for this disagreement. In the earlier work,7 the
Gaussian form of potential was fit to a larger set of points; such
a set was easier to generate using the original Murrell potential.20

It is probably possible to improve these results greatly with a
larger and denser set of points for the potential energy surface
than was used. The set employed nevertheless illustrates the
assertion, namely that it is possible to get reasonable representa-
tions of the anharmonic character of the hydrogen atom in
particular in a molecular environment that otherwise behaves
as a collection of classical oscillators. The angle-bend frequen-
cies obtained with the original Gaussian 03 set of routines17

also do not agree with experiment. The anharmonic modes
analyzed here, however, are more in agreement with the
expected value, which should correspond essentially to the
harmonic frequency.

Finally, with respect to the illustrative example of HCN, even
though there is indeed a minimum in the linear stretch frequency
of H against CN, the range of values is quite small. Moreover,
the use of a single orbital exponent for both thex and theyz
modes is acceptable. This fact has two implications: one, it is
a considerable simplification of the analysis only to have to
deal with one orbital parameter in the wave function basis set;
two, it is much easier to make the transition to spherical
oscillator basis functions, if one wishes. All of this suggests, as
mentioned earlier, that it ought to be possible to develop a set
of orbital exponents for the oscillator basis functions along lines

TABLE 2: Frequencies, Transition Character, and
Transition Moments for the Minimum Stretch Frequency vs
Orbital Exponent

orbital exponents (x, y, z): 97.50 Å-2

equivalent harmonic frequencies: 3794.33 cm-1

ground-state energy: 1.23020 eV

0 f n ω 〈nx〉 〈ny〉 〈nz〉 µx µy µz µ

0 1 674.50 0.01 0.55 2.65 0.00 0.00 0.52 0.52
0 2 674.50 0.01 2.65 0.55 0.00 0.52 0.00 0.52
0 6 2840.87 0.01 2.55 2.55 0.00 0.08 0.05 0.09
0 7 2840.87 0.01 2.55 2.55 0.00 0.05 0.08 0.09
0 8 3517.60 0.01 2.87 0.84 0.00 0.13 0.03 0.13
0 9 3517.60 0.01 0.84 2.87 0.00 0.03 0.13 0.13
0 10 3820.88 1.00 0.74 0.74 0.14 0.00 0.00 0.14

〈nx〉I ) ∑
nx)1,N

nxCI,nx

2 (3.3)

Figure 1. Variation of the H-CN angle bend modes as a function of
the original exponentax()y,z).

Figure 2. Variation of the H-CN linear stretch mode as a function
of the original exponentax()y,z).
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used by Slater years ago17 to specify adequate basis functions
to use for calculations involving the electron(s) in molecules.
It seems reasonable to expect that classes of bonds ought to
behave essentially the same such that one could construct a set
of basis functions associated with the atoms and bonds involved
in any arbitrary molecule.

4. Discussion

This treatment of HCN does not include account of the
possible, but infrequent (and therefore unlikely because of the
high barrier) event of hydrogen tunneling from HCNf CNH.
Nevertheless, tunneling in general is an important issue,23 and
the methods presented here can be useful for the treatment of
a number of systems in which tunneling is possible. In addition,
the analysis adapts to the specific consideration of proton
transfer between local minima activated by fluctuations of a
polar environment (in a sense analogous to the Marcus electron
transfer theory24). Although these issues are not treated in this
paper, they are the subject of continuing investigation. A brief
discussion now follows of the application of this kind of analysis
to problems of tunneling.

The simplest type of hydrogen/proton-transfer system has a
schematic representation:

It is trivial to demonstrate, for example, that the sum of two
Morse functions, one for AH and the other for HB yield two
minima and a barrier on the line joining A and B.25-27 The A
and B species may be neutral or charged. The AB-distance may
also be fixed, although not necessarily rigidly so, when the
species are atoms within a larger molecular framework. For free
species AH, B, HB, and A in solution, for example, the proton/
hydrogen transfer is considered with reference to an instanta-
neous separationRAB. One eventually needs to average over
the ensemble of reactant separations in order to define the
reaction rate constant. In any case, it is possible to define points
of reference for the proton/hydrogen atom with respect to the
two species A and B such that one schematically considers a
transition

for which the A-B distance is fixed. The hydrogen atom
migrates between positions of equilibrium in the space between
A and B. In the simplest case, there is no intervening atom over
or around which the hydrogen atom would need to move in
order to make a transition from an initial to a final state.

In the case of HCNh CNH, however, the space between
the two minima for hydrogen is occupied by the CN-species.
This is clearly a complicating factor. As the discussion of HCN
in the last section pointed out, with the use of Gaussian
expansions of the potential energy surface, it is possible to fit
an accurate local model potential for the initial and final states
without considering the entire molecule. It is also possible to
fit a model potential that is referred to intermediate points of
expansion in order to be able to evaluate the two-center matrix
elements that will arise. The spirit of this approach is generally
the same as is used in the density functional theory in which
exchange kernels are modeled and fit to Gaussian expansions.
The fitting regions are typically those volumes in coordinate
space where the influence of the potential is the greatest. The
resulting density-functional-theory matrix elements with the
(Gaussian) basis functions are also essentially overlap integrals.
The evaluation of matrix elements associated with tunneling

naturally involves two-center integrals. Such integrals have not
been considered in section 3 for the HCN system, but they are
discussed in the Appendix for completeness.

In summary, the objective of this paper has been to show
that it ought to be possible to evolve analyses oflocal
anharmonicity, in particular of hydrogen, in otherwise extended
and complicated molecular systems. The nature of the analysis
emphasizes the use oflinear combinationsof orthonormal
Cartesian harmonic oscillator basis functions together with
accurate local representations of the potential energy function
built as a power series in very simple Gaussian exponential
functions. The essential features of the oscillations of H against
(classical) CN for both angle-bend modes and the linear stretch
was shown. The agreement with experimental frequencies is
(probably) as good as the potential energy surface to which the
Gaussian model potential was fit. The transparency of the
analysis suggests a straightforward extension to handle the issue
of tunneling.
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A. Two-Center Matrix Elements

The body of this paper dealt with the evaluation of matrix
elements using wave functions referred to the same coordinate
origin; viz.

in which F(x) is an arbitrary function ofx. As is well-known
from the molecular electronic problem,28 the simple LCAO
method yields two-center matrix elements of the following kind:

These matrix elements arise as a consequence of the use of a
linear combination of two primitive basis functions referred to
two separate coordinate origins:

Here,A andB are linear coefficients that are determined by the
standard variational method of quantum mechanics.36

If this approach is applied, for example, to the phenomenon
of hydrogen migration within a molecule or between molecules,
Cartesian oscillator functions can be used as primitive basis
functions for the LCAO approximation, as has been done for
HCN in section 3 above. Although the examples of HCN in
this paper did not make use of expansions about multiple centers
(because tunneling to HNC was not considered), the following
discussion of the appropriate manipulations is presented for
completeness.

By adopting the Cartesian Gaussian basis functions, one can
make use of the Moshinsky-Smirnov transformation15,16 to
condense the product of the two functions into a sum of terms,
one of which is a new wave function with reference to a
weighted point on the line between the original two points of
expansion.7

The one-dimensional Talmi transformation operates on the
Cartesian harmonic oscillator functions and uses of Smirnov’s
one-dimensional variant16 of the Talmi/Moshinsky coefficients.
The basis functions are defined by eqs 2.1 and 2.2. The one-

AH + B h A + HB

A-H‚‚‚B h A‚‚H‚‚B h A‚‚‚H-B

〈A, m|F(x)|A, n〉 ) ∫-∞

∞
dxA φm(xaxA)φn(xaxA) F(x) (A.1)

〈A, m|F(x)|B,n〉 ) ∫-∞

∞
dxA φm(xaxA)φn(xbxB) F(x) (A.2)

Φm ) Aφm(xaxA) + Bφm(xbxB) (A.3)
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dimensional Talmi transformation itself is16

subject ton1 + n2 ) N1 + N2 (conservation of energy) and

The formula

defines the Talmi coefficientT(N1, N2; n1, n2) with R and â
defined as

Single species matrix elements depend on the transformation
(eq A.4) through the following relationships. Given

with XA andXB the locations of the points of expansion of the
basis functions, one has

and

Thus, the one-dimensional Talmi transformation is

The two-particle matrix elements are not considered here, but
they have been discussed elsewhere.7

For an arbitrary one-dimensional operatorF(x), the use of
the Moshinsky-Smirnov transformation in eq A.2 yields16

At this point, one can generalize the evaluation of the remaining

integral along lines parallel to the BJM analysis of the single
center integrals. In particular, using eqs 2.3 and 2.4, one has

The lowercase indexp ) m/2 - s. In eq A.13, min(p) )
max(p) - [m/2] and max(p) ) m/2. The coefficientDM,p is
simply

Finally, the Talmi-like integralSp is

Note that in the limits asb f a andXP f XA [XBA ) 0], then
Sp f Tp, and the BJM coefficient is

Becauseφ2N+1(0) ) 0 [due toH2N+1(0) ) 0] only even terms
in the summation overN survive.

In the case thatF(x) ) exp(- cxC
2), one derives a recurrence

relation forSp that reduces to the associated Talmi integral in
the limit a f b. From the definition ofSp, and integrating by
parts, one finds

It is clearly the case that

The quantitiesS0 and S1/2 are easily found. The preceding
establishes a consistent treatment of integrals for the operator
F(x) ) e-cxc

2.

References and Notes

(1) Eisenberg, J. M.; Griener, W.Nuclear Models; North-Holland
Pub.: Amsterdam, 1970.

(2) Szabo, A.; Ostlund, N. S.Modern Quantum Chemistry, Introduction
to AdVanced Electronic Structure Theory; Dover Publications: New York,
1996.

(3) Kittel, C. Quantum Theory of Solids; John Wiley & Sons: New
York, 1963.

(4) See, for example: Huang, X.; Carter, S.; Bowman, J. M.J. Chem.
Phys.2003, 118, 5431. Bowman, J. M.; Carter, S.; Huang, X.Int. ReV.
Phys. Chem.2003, 22, 533.

φn1
(xaxA)φn2

(xbxB) )

∑
N1,N2

T(N1, N2; n1, n2)φN1
(xa + b X)φN2(( ab

a + b)1/2

x) (A.4)

x ) xA - xB

X )
axA + bxB

a + b
(A.5)

T(N1, N2; n1, n2) ) (N1!N2!

n1!n2!
)1/2

R(n2-N1)/2â(n1-N1)/2 ×

∑
i+j)N1

(n1
i )(n2

j )Ri(- â)j (A.6)

R ) 1 - a
a + b

(A.7)

â ) 1 - b
a + b

(A.8)

xA ) x - XA xB ) x - XB (A.9)

XBA ) XB - XA (A.10)

xP ) x -
aXA + bXB

a + b
) x - XP (A.11)

φn1
(xaxA)φn2

(xaxB) ) ∑
N1,N2

T(N1, N2; n1, n2) ×

φN1
(xa + b xP)φN2(( ab

a + b)1/2

XBA) (A.12)

〈A, m|F(x)|B, n〉 ) ∫-∞

∞
dx φm(xaxA)φn(xbxB) F(x) )

∑
M,N

T(MN; mn)φN(x ab

a + b
XBA) ×

∫-∞

∞
dxP φM(xa + bxP)F(x) (A.13)

〈A, m|F(x)|B, n〉 ) ∑
M,N

T(MN; mn)φN(x ab

a + b
XBA) ×

∑
s)0

[m/2]

AM,s(a + b)m/2-s∫-∞

∞
dx xP

m-2s ×

exp{-
1

2
(a + b)xP

2}F(x) )

∑
M,N

T(MN; mn)φN(x ab

a + b
XBA) ∑

min(p)

max(p)

DM,pSp (A.14)

DM,p ) Γ(p + 1/2)AM,M/2-p (A.15)

Sp )
[12(a + b)]p+(1/2)

Γ(p + 1
2)

∫-∞

∞
dx xP

2pexp[- 1
2
(a + b)xP

2] F(x)

(A.16)

lim
bfa

lim
XBAf0

{∑
M,N

φN(XBA)T(MN;mn)DM,p} ) B(m, n, p) (A.17)

Sp+1 ) a + b
a + b + 2c

Sp +
x2(a + b)c
a + b + 2c

XCP

Γ(p + 1)

Γ(p + 3
2)

Sp+(1/2)

(A.18)

lim
bfa

lim
XBAf0

Sp ) Tp (A.19)

Analysis of Local Anharmonicity J. Phys. Chem. A, Vol. 109, No. 50, 200511435



(5) Schmidt, P. P.Int. J. Quantum Chem.1995, 53, 663.
(6) Schmidt, P. P.Int. J. Quantum Chem.1995, 53, 651.
(7) Schmidt, P. P.Int. J. Quantum Chem.2002, 90, 202.
(8) Brody, T. A.; Jacob, G.; Moshinsky, M.Nucl. Phys.1960, 17, 16.
(9) Talmi, I. HelV. Phys. Acta1952, 25, 185.

(10) Chaco´n, E.; de Llano, M.ReV. Mex. Fiz.1963, 12, 57.
(11) Chasman, R. R.; Wahlborn, S.Nucl. Phys.1967, A90, 401.
(12) Talman, J. D.Nucl. Phys.1970, A141, 273.
(13) Chaos-Cador, L.; Ley-Koo, E.Int. J. Quantum Chem.2004, 97,

844.
(14) Moshinsky, M.The Harmonic Oscillator in Modern Physics: From

Atoms to Quarks; Gordon and Breach: New York, 1969.
(15) Moshinsky, M.; Smirnov, Yu. F.The Harmonic Oscillator in

Modern Physics; Harwood Academic Pub.: Amsterdam, 1996.
(16) Smirnov, Yu. F.Nucl. Phys.1962, 39, 346.
(17) Slater, J. C.Phys. ReV. 1930, 36, 57.
(18) Gaussian 03, Revision B.05. Frisch, M. J.; Trucks, G. W.; Schlegel,

H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.,
Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.;
Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.;
Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda,
R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai,
H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo,
C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A.
J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich,
S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A.
D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A.
G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.;
Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham,
M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;
Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian,
Inc.: Pittsburgh, PA, 2003.

(19) Basis sets are also obtainable from the Extensible Computational
Chemistry Environment Basis Set Database, Version 02/25/04. This basis
set was developed and is distributed by the Molecular Science Computing
Facility, Environmental and Molecular Sciences Laboratory that is part of
the Pacific Northwest Laboratory, P.O. Box 999, Richland, WA 99352,
USA and funded by the, U.S. Department of Energy: website http://
www.emsl.pnl.gov/forms/basisform.html.

(20) Murrell, J. N.; Carter, S.; Halonen, L. O.J. Mol. Spectrosc.1982,
93, 307.

(21) Strey, G.; Mills, I. M.Mol. Phys.1973, 26, 129.

(22) Press, W. H.; Teuklosky, S. A.; Vettering, W. T.; Flannery, B. P.
Numerical Recipes in Fortran: The Art of Scientific Computing, 2nd ed.;
Cambridge UP: Cambridge, U.K., 1992.

(23) Jortner, J.; Pullman, B. Eds.Tunneling; D. Reidel: Dordrecht, The
Netherlands, 1986. An extensive and useful discussion of proton transfer
is contained in:Faraday Discuss. Chem. Soc.1982, 74.

(24) The original reference to the Marcus electron transfer theory is:
Marcus, R. A.J. Chem. Phys.1956, 24, 966. A summary of the electron
transfer theory, current to 1974, is: Schmidt, P. P. InElectrochemistry, A
Specialist Periodical Report; The Chemical Society: London, 1975; Vol.
5, pp 21-131. Marcus’s extension of his approach to other reactions,
including proton transfer, is: Marcus, R. A.J. Phys. Chem.1968, 72, 891.

(25) Schmidt, P. P.J. Phys. Chem.1989, 93, 6610. Tuckerman, M. E.;
Marx, D.; Klein, M. L.; Parrinello, M.Science1997, 275, 817 and references
therein.

(26) Schmidt, P. P.Int. J. Quantum Chem.1999, 72, 473.
(27) Schmidt, P. P.AdV. Quantum Chem.1994, 25, 47.
(28) Levine, I. N.Quantum Chemistry, 3rd ed.; Allyn and Bacon, Boston,

MA, 1983.
(29) It sometimes makes sense to use the do loop construction, e.g.,i

) 1, 3 familiar from Fortran, to express the summation limits.
(30) BJM coefficients are implicit in a number of treatments,10-16 but

they are explicitly derived here. They are essential to the analyses considered
in this work.

(31) Note that the Brody-Jacob-Moshinsky8 coefficients are unchanged
if one expresses the Talmi integral only in dimensionless coordinatesxj )
xax with a ) mω/p.

(32) The coordinates of the individual species all are referred to a
laboratory coordinate origin. Where confusion is not likely, the H subscript
on xH will be dropped.

(33) See ref 7 for an alternative expression that does not, however, make
use of the 1D BJM analysis.

(34) Unpublished results.
(35) This is the expectation value of the number operatorNop ) R†R

whereR† and R are the creation and annihilation operators respectively.
(36) As discussed in ref 7, the general treatment of (hydrogenic)

anharmonicity under the assumptions of the self-consistent-field (viz.,
Hartree) approach also yields three- and four-center or higher matrix
elements. The appearance of the simpler two-center matrix elements is a
consequence of the use of a potential energy function with, at most, pair
interactions.

11436 J. Phys. Chem. A, Vol. 109, No. 50, 2005 Schmidt


